

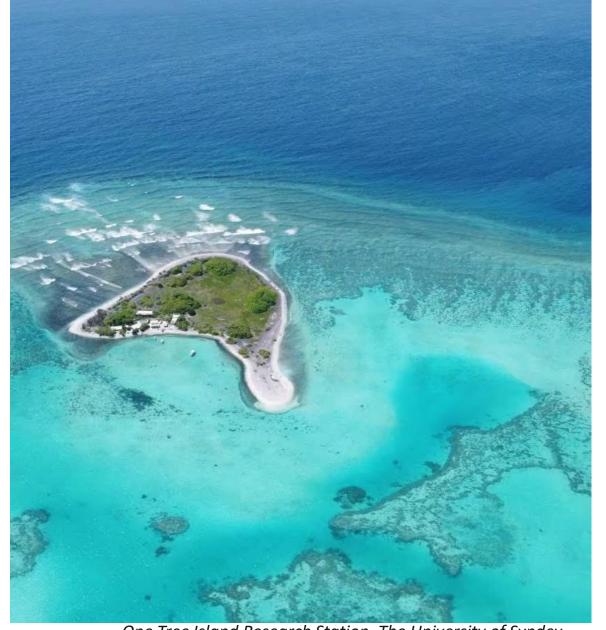
P3A: Alternative protein-rich feedstuff and advanced amino acid nutrition

Sonia Liu, Ruth Zadoks, Peter Selle, Mehdi Toghyani, Shemil Macelline, Eunjoo Kim

Acknowledgement

AgriFutures Chicken Meat Consortium – Nutrition, Gut Health and Environment project (PRO-016111) is a multi-institutional and multi-national collaboration, part of the AgriFutures Chicken Meat Program.

The Consortium team acknowledges funding and support from all stakeholders. It includes AgriFutures Australia with its associated levy payers, The University of Queensland, The University of Sydney, Central Queensland University, Department of Primary Industry Queensland, Massey University, Aviagen, dsm-firmenich, Lucta, Eurolysine (formally Metex Noovistago), Lallemand, Poultry Research Foundation, World Poultry Science Association New Zealand Branch, and another nine international universities.



Overview:

Reduce our reliance on imported SBM

Ten feeding studies were budgeted.

Eight have been completed, one is ongoing, and another scheduled for early 2026.

The completed studies

Contents lists available at ScienceDirect

Animal Nutrition

journal homepage: http://www.keaipublishing.com/en/journals/aninu/

Review Article

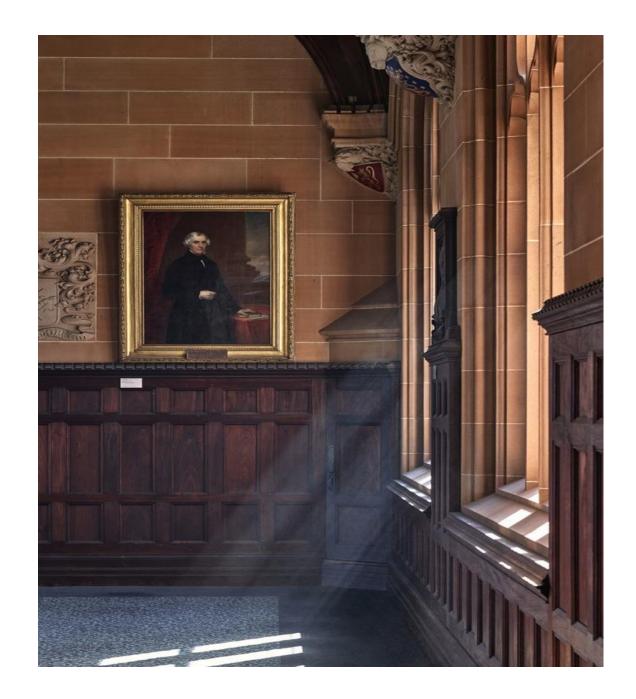
The potential of canola to decrease soybean meal inclusions in diets for broiler chickens

Milan Kandel ^{a, b}, Shemil P. Macelline ^{a, b}, Mehdi Toghyani ^{a, b}, Peter V. Chrystal ^{b, c}, Mingan Choct ^{a, b}, Aaron J. Cowieson ^d, Sonia Yun Liu ^{a, b}, Peter H. Selle ^{b, e, *}

- a School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- ^b Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
- c Aviagen Huntsville, 35808, AL, USA
- ^d DSM-Firmenich, Heerlen, 6400, the Netherlands
- ^e Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia

ARTICLEINFO

Article history:
Received 28 July 2024
Received in revised form
17 November 2024
Accepted 19 November 2024
Available online 28 November 2024


Keywords: Amino acid Canola Poultry

ABSTRACT

Feedstuffs derived from canola, predominantly canola meals plus whole, "full-fat" canola seed, and even canola protein isolates and/or concentrates, have the potential to decrease soybean meal inclusions in diets for broiler chickens. The protein content of soybean meal exceeds that of canola meal; however, canola meal contains more methionine and cysteine in absolute and relative terms. The purpose of this review is to explore this potential as Australian chicken-meat production is uniquely positioned to take advantage of this opportunity to the extent that it can be realised. Australia harvests ample quantities of canola, the bulk of which is exported as seed; alternatively, soybean production is very limited; therefore, large quantities of soybean meal are imported as the principal source of dietary protein for broiler chickens. This importation of soybean meal is not sustainable; however, canola meal inclusions in broiler diets do not usually exceed 100 g/kg. Regression equations derived from 15 recent studies indicate that

Kandel, M., Macelline, S. P., Toghyani, M., Chrystal, P. V., Choct, M., Cowieson, A. J., Liu, S. Y., and Selle, P. H. 2025. The potential of canola to decrease soybean meal inclusions in diets for broiler chickens. Anim. Nutr. 20:342-354.

FISEVIER

Contents lists available at ScienceDirect

Poultry Science

journal homepage: www.elsevier.com/locate/psj

AC1 study – the maximal canola inclusion

Mr Milan Kandel

The impact of canola meal and canola seed inclusions in broiler diets

Milan Kandel ^{a,b}, Shemil P. Macelline ^{a,b}, Mehdi Toghyani ^{a,b}, Peter H. Selle ^{a,c}, Sonia Y. Liu ^{a,b,*}

- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
- b Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- ^c Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia

ARTICLE INFO

Keywords: Digestibility Complete replacement Canola meal Growth

ABSTRACT

A total of 450 day-old straight-run Ross 308 broiler chickens were offered nine dietary regimes where canola products primarily replaced soybean meal at varying levels in iso-energetic diets with balanced amino acid profiles. Each of the nine dietary treatments was offered to ten replicate cages, with five birds per cage from 1 to 42 days post-hatch. During the starter period (1-10 d), there was no significant dietary impact on feed intake and feed conversion ratio (FCR) (P > 0.05) and transition of canola product inclusion from 0 to 50 g/kg did not influence weight gain but transition from 50 to 100 g/kg depressed weight gain by 2.17 % (317 versus 323 g/kg, P = 0.049). From 1-24, 1-35 and 1-42 days post-hatch, canola products inclusions depressed feed intake and weight gain (P > 0.05) compared to canola products-free diet. Dietary treatments did not influence FCR for 1-42 days post-hatch. Based on pair-wise comparisons diets containing the highest canola product inclusions (Treatment 9) reduced feed intake by 6.90 % (5673 vs. 5281 g/bird, P = 0.011) and body weight gain (BWG) by 7.11 % (3727 vs. 3462 g/bird, P = 0.004) compared to canola product-free diet. Negative correlations between feed intake and pellet durability index (PDI) were detected in the finisher (r = -0.887, P = 0.001) and withdrawal phases (r = -0.869, P = 0.002). Dietary treatments did not influence carcass traits (P > 0.05). Apparent metabolizable energy (AME), nitrogen retention, and AMEn were not affected by dietary treatments. However, diets with canola products exhibited a lower AME:GE ratio compared to canola-free diets (P = 0.045). There were no significant differences in apparent starch and protein digestibility coefficients in the distal jejunum and distal ileum (P > 0.05). In conclusion, since there were no significant changes in FCR and nutrient digestibility coefficients with the inclusion of canola products, it is fair to argue that depression of growth performance in broiler chicken offered diets containing high inclusion rates of canola products is likely due to a reduction in feed

Trts	Starter	Grower	Finisher	Withdrawal	BWG/bird (g)	Fl/bird (g)	FCR (g/g)	BWc FCR (g/g)	Feed Conversion
1	0%	0%	0%	0%	3727°	5673°	1.523	1.539	Ratio-NS
2	5%	12%	16%	22%	3598b	5442b	1.514	1.555	
3	5%	12%	20%	26%	3510 ^{ab}	5308 ^{ab}	1 513	1.573	~ 7% DROP IN
4	5%	16%	20%	30%	3513 ^{ab}	5279 ^{ab}	1.503	1.562	BWG
5	5%	12%	24%	30%	3456a	5287 ^{ab}	1.530	1.601	250 g/bird
6	5%	16%	24%	30%	3478a	5230a	1,506	1.572	70/ 7707 111
7	10%	16%	20%	30%	3471a	5271 ^{ab}	1.519	1.586	~ 7% DROP IN
8	10%	16%	24%	30%	3462a	5247 ^{ab}	1.517	1.586	400 g/bird
9	10%	20%	24%	30%	3462a	5281 ^{ab}	1.527	1.596	
		P-va	lue		<0.001	<0.001	0.966	0.479	

In conclusion, since there were no significant changes in FCR and nutrient digestibility coefficients with the inclusion of canola products, it is fair to argue that depression of growth performance in broiler chicken offered diets containing high inclusion rates of canola products is likely due to a reduction in feed intake.

AC2 - Impacts of Dietary Nutrient Density on Canola-based Broiler Diets

Characterization of diets

Positive Control diet SBM + Canola seed at 4, 5, 6 and 7% in starter, grower,

finisher and withdrawal diets, respectively

High CM/CS diets at 15, 20, 25, 30% in starter, grower finisher and

withdrawal diets, respectively

T2 with 1.5, 2.0, 2.5 and 3.0% higher nutrient density, in starter, grower

finisher and withdrawal diets, respectively (AA and ME)

T2 with 3.0, 4.0, 5.0 and 6.0% higher nutrient density, in starter, grower

finisher and withdrawal diets, respectively (AA and ME)

Treatment

T2

T3

T4

N/Ir	ΛΛi	lan	Kar	اماء
IVII	IVII	เสเเ	Nai	шы

34 (2025) 100566

Contents lists available at ScienceDirect

Journal of Applied Poultry Research

iournal homepage: www.elsevier.com/locate/japr

Research Report

Increased dietary nutrient density did not restore growth performance in broiler chickens offered diets with high canola inclusion

Milan Kandel ^{a,b}, Shemil P. Macelline ^{a,b}, Robin R. Melwani ^{a,b}, Mehdi Toghyani ^{a,b}, Ruth N. Zadoks ^{b,c}, Peter H. Selle ^{b,c}, Sonia Y. Liu ^{a,b,*}

- ^a School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- b Poultry Research Foundation, The University of Sydney, Camden, NSW 2570, Australia
 c Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia

ARTICLEINFO

Keywords: Canola meal Amino acid Energy Growth SUMMARY

Feed intake reduction is one of the key challenges in diets formulated with higher inclusions of canola products for broiler chickens. Increasing dietary nutrient densities was proposed to compensate for nutrient losses caused by decreased feed intake. Hence, this study investigated whether increasing amino acid and energy density in diets with higher inclusions of canola products restores growth performance in straight-run Ross 308 broiler chickens. The study included four dietary treatments: a typical wheat-soybean meal-based control diet (T1), a diet with high inclusions of canola products at 15, 20, 25, 30 % in starter, grower finisher and withdrawal diets, respectively (T2), and two diets (T3 and T4) with higher nutrient densities compared to T2. In T3 and T4, nutrient densities were progressively increased across phases, with T3 increasing by 1.5 % to 3.0 % and T4 increasing by 3.0 % to 6.0 % body weight gain (P < 0.001), feed intake (P < 0.001), FCR (P < 0.003), and body

AC5- dietary strategies to improve feed take in broiler chickens offered diets containing high levels of canola products

Mr Milan Kandel

Treatments	Feed additive /nutrient strategy
PC	Control (wheat-SBM, 6% CS in GRW and 7% CS in FIN)
NC1	Medium inclusions of CM at 8% and 9% in grower and finisher phases
NC2	High inclusions of CM at 9% and 18% in grower and finisher phases
NC1 + VP	VP multi-carbohydrase
NC2 + PB	Pellet binder (inclusion: 1 g/kg)
NC2 + Glu	Glutamate (10 g/kg)
NC2 + I	Iodine (15 mg/kg)
NC2 + SB	Sodium metabisulphite (2.50 g/kg)
NC2 + Met	NC2 diet formulated with 10% higher digestible methionine
NC2 + FB	NC2 diet formulated with faba beans

Treatments	FCR D9-35(g/g)
PC	1.433 ^d
NC1	1.412 ^{cd}
NC2	1.393 ^{bc}
NC1 + VP	1.378 ^{abc}
NC2 + PB	1.400 ^{bcd}
NC2 + Glu	1.392 ^{bc}
NC2 + I	1.375 ^{abc}
NC2 + SB	1.372 ^{ab}
NC2 + Met	1.380 ^{abc}
NC2 + FB	1.353 ^a
SEM	0.008
P -value	<0.001

Study 1 (AC10) – Cage study, Using field peas, canola product and moderate levels of non-bound amino acids to replace SBM

Mr Milan Kandel

Treatments	SBM inclusions	Pea inclusions	Dietary CP
Diet 1A	Conventional	-	СР
Diet 2B	Medium	-	CP – 1%
Diet 3C	Low/Nil	-	CP – 2%
Diet 4D	Conventional	+	СР
Diet 5E	Medium	+	CP – 1%
Diet 6F	Low/Nil	+	CP – 2%

	Starter			Starter Grower			Finisher				Withdrawal						
Diets	SBM	Pea	Wheat	NBAA	SBM		Wheat	NBAA	SBM	Pea	Wheat	NBAA		SBM	Pea	Wheat	NBAA
1	230	-	621	15.9	170	-	653	13.7	140	-	707	13.2		100	-	708	15.3
2	180	-	680	27.4	120	-	719	25.1	70	-	759	25.5		50	-	781	27.9
3	130	-	720	39.5	70	-	760	37.1	-	-	796	38.6		-	-	816	34.2
4	230	50	583	14.9	170	80	591	12.1	140	100	630	11.2		100	120	603	12.1
5	180	50	646	26.2	120	80	658	23.0	70	100	686	22.9		50	120	590	25.2
6	130	50	660	33.7	70	80	706	35.2	-	100	726	36.3		-	120	709	32.2

Kandel, M., Toghyani, M., Macelline, S. P., Selle, P. H., Zadoks, R. N., and Liu, S. Y. 2025. The impact of soybean meal and field peas inclusion on growth performance, carcass traits and nutrient digestibilities in broiler chickens offered wheat-based diets. Anim.

Nutr.:10.1016/j.aninu.2025.1003.1011.

In conclusion, replacing SBM with 5-12% field peas and NBAAs in wheat-based broiler diets to achieve a 20 g/kg dietary CP reduction did not compromise growth performance in broiler chickens.

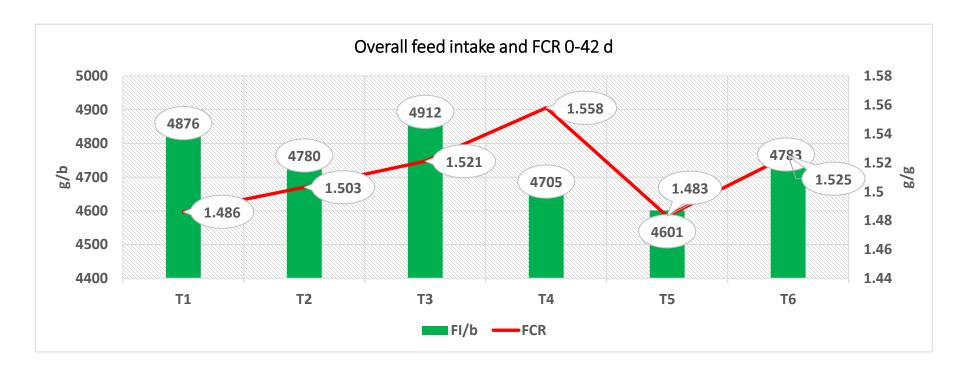
AC7- Impact of wheat particle size in reduced soybean meal diets (canola, peas, meat meal and NBAAs) on broiler growth performance (WW: whole wheat)

Diets	Characterization of diets					
T1	Standard SBM- Wheat diet (3.2mm GRW, 3.2mm FIN diets)					
T2	Standard SBM- Wheat diet (3.2mm GRW, 6mm FIN diets)					
Т3	Standard SBM- Wheat diet (6mm GRW, 6mm FIN diets)					
T4	Standard SBM- Wheat diet (7.5% WW in GRW, 15% WW in FIN diet)					
T5	Low/nil SBM- Wheat diet(3.2mm GRW, 3.2mm FIN diets)					
T6	Low/nil SBM- Wheat diet (3.2mm GRW, 6mm FIN diets)					
T7	Low/nil SBM- Wheat diet (6mm GRW, 6mm FIN diets)					
T8	Low/nil SBM- Wheat diet (7.5% WW in GRW, 15% WW in FIN diet)					

Mr Milan Kandel

- Regardless of particle size, low SBM diets had worse performance (2434 versus 2354 g/kg in BWG, 1.486 versus 1.531 in FCR) from 0-35 days post-hatch.
- There is a trend that whole wheat inclusion reduced FI in std-SBM diets (3680 versus 3573 g/kg) but increased FI in low-SBM diets (3513 versus 3666 g/kg, P = 0.064)

Legumes!

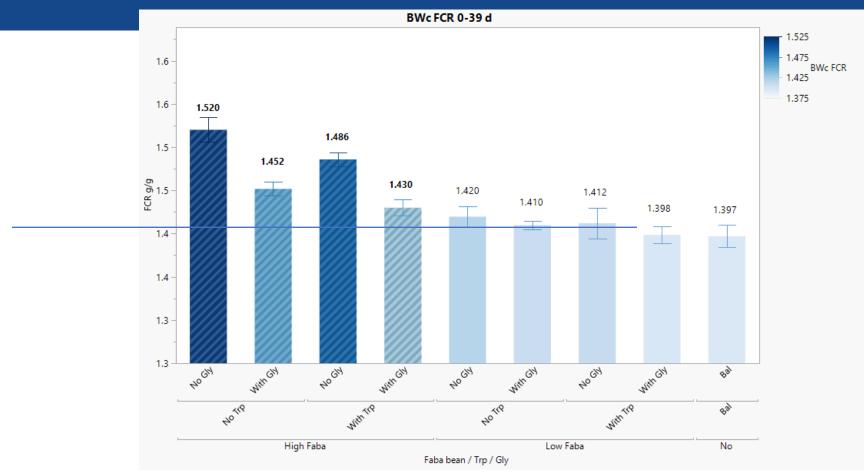

AC3 - Field peas and faba beans as alternatives to soybean meal

✓ 360 day-old straight-run Ross 308 broiler chicks allocated to 6 treatments – 10 reps of 6 birds

TRT		laguma			
	STR (0-10 d) GRW (10-25 d)		FIN (25-35 d)	WDRL (35-42 d)	legume
1	-	-	-	-	-
2	40 (12%)	66 (17%)	100 (25%)	100 (25%)	Peas
3	40 (12%)	66 (17%)	100 (25%)	100 (25%)	Faba beans
4	55 (17%)	100 (25%)	100 (25%)	100 (25%)	Peas
5	55 (17%)	100 (25%)	100 (25%)	100 (25%)	Faba beans
6	70 (12+12%)	100 (12.5+12.5%)	100 (12.5+12.5 %)	100 (12.5+12.5 %)	Peas + Faba

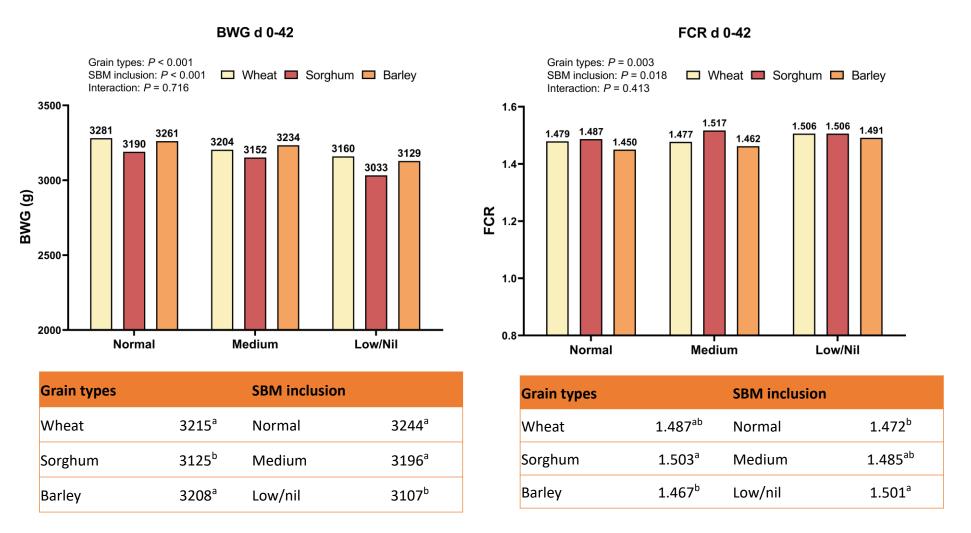
Ms Shay Sadr

- T2 and 3 worked
- STR and GRW?
- T6? Why good


AC4 — Optimize diets using faba beans to replace SBM

Ms Shay Sadr

Treatment	% of Faba bean inclusion	% of SBM reduction	Balancing Trp	Balancing for Gly				
	STR, GRW, FIN	STR, GRW, FIN		equiv				
1	15, 18 and 21%	50, 65 and 80%	Nil	Nil				
2	15, 18 and 21%	50, 65 and 80%	Nil	Yes				
3	15, 18 and 21%	50, 65 and 80%	Yes	Nil				
4	15, 18 and 21%	50, 65 and 80%	Yes	Yes				
5	18, 21 and 24%	70, 85 and 100%	Nil	Nil				
6	18, 21 and 24%	70, 85 and 100%	Nil	Yes				
7	18, 21 and 24%	70, 85 and 100%	Yes	Nil				
8	18, 21 and 24%	70, 85 and 100%	Yes	Yes				
Control	Formulate based on soybean meal diet							

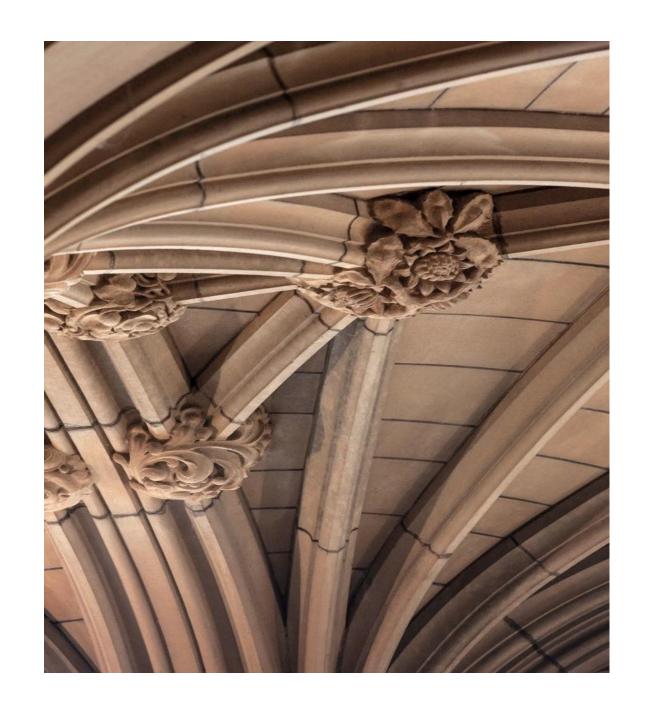

Diet Performance	Summary:
------------------	----------

- Diets with low faba bean + Trp + Gly performed similarly to the industry control.
- Removing either Trp or Gly from low faba bean diets results in a 1-point increase in FCR (non-significant).
- Removing both Trp and Gly from low faba bean diets leads to a 2-point increase in FCR (non-significant).
- High faba bean diets show a 7.5-point increase in FCR compared to the industry control (P < 0.05).
- Supplementing both Trp and Gly improves FCR, but Gly is more critical for performance (P < 0.05).

P-value		
Faba Beans		<.001
Tryptophan		0.008
Glycine		<.001
Faba × Trp		0.068
Faba × Gly		0.003
Trp × Gly	0.433	
Faba × Trp × 0	0.570	

AC6 - The impact of base grain and SBM inclusions on growth performance

Soybean meal inclusion can be reduced by 25%, 50%, and 75% in starter, grower, and finisher diets, respectively, without compromising growth performance. However, further reductions of 50%, 75%, and 100% led to a decrease in weight gain by 113 g per bird, an increase of FCR by 2 points

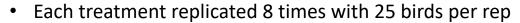

Ms Yutong Fu

Final steps

Young birds?

Performance benefit of low protein diets?

Dr Shemil Macelline


Ms Yutong Fu

Diet	Starter (0-14 days)	Grower (15-24 days)	Finisher (25 to 35 days)
1	Industry control	Industry control	Industry control
2	Industry control, High Lys, Met, Thr (10% increase)	Industry control	Industry control
3	Industry control	Low-SBM diet (60% reduction)	Nil-SBM diet
4	Industry control, High Lys, Met, Thr (10% increase)	Industry control	Nil-SBM diet
5	Industry control, High Lys, Met, Thr (10% increase)	Low-SBM diet	Nil-SBM diet
6	Industry control, High AA density (10% increase)	Industry control	Nil-SBM diet
7	Industry control, High AA density (10% increase)	Low-SBM diet	Nil-SBM diet

AC9 (2026) Treatment arrangement

Balanced for: Lys, M+C, Thr, Trp, Ile, Val and Arg

- Collet faeces at the end of each phase to analyse for N
- Litter quality measurement at the end of each phase selected TRT
- Foot pad and hock scoring on day 48
- Carcass parameters (3 birds/rep) on day 49

Dr Mehdi Toghyani

	% of dietary crude protein levels								
Phase	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9
Starter 1 - 10 d	23	22	21	23	23	23	23	23	23
Grower 11 - 24 d	21.5	20.5	19.5	20.5	19.5	21.5	21.5	21.5	21.5
Finisher 25 - 35 d	19.5	18.5	17.5	18.5	17.5	18.5	17.5	19.5	19.5
Withdrawal 36 – 49 d	18.5	17.5	16.5	17.5	16.5	17.5	16.5	17.5	16.5

What else?

- Feed intake regulation in broiler chickens offered canola diets (transcriptomic analysis, APSS2026, Ms Shay Sadr)
- Gut health and NSP fermentation in diets containing NBAA and alternative feed ingredients (AC6 study, Ms Yutong Fu and Dr Eunjoo Kim)

Data pending:

- Shift in host-diet-microbial interactions (Dr Irene Li, AC2, AC3, AC4, and AC6)
- Host gene expression to understand nutrient utilisation and absorption, gut integrity (A/Prof Reza Barekatain AC3, AC4 and AC6)

2026 Graduates

Mengzhu (Jojo) Wang

Carria Xie

Milan Kandel

sonia.liu@sydney.edu.au

Acknowledgements

Ruth Zadoks

Peter Selle

Shemil MacElline

Mehdi Toghyani

Eunjoo Kim

Milan Kandel

Shay Sadr

Jojo Wang

Carria Xie

Yutong Fu

Deng Zhan

Damilola Kareen

The Technical Team

Joy Gill

Wade Chen

Kylie Warr

Jorden Fletcher